Sampling II LPO 9951 / Fall 2015

PURPOSE In the last lecture, we discussed a number of ways to properly estimate the means and variances of complex survey designs. In this lecture, we'll discuss how to use Stata's internal svy commands and various variance estimation methods to more easily and correctly estimate what we want.

Complex survey designs: Cluster sampling and stratification

In the NCES surveys you'll be using this semester, the designers combined a design that includes multistage cluster sampling with stratification. In ECLS, for example, the designers designated counties as PSUs. They next stratified the sample by creating strata that combined census region with msa status, percent minority, and per capita income. They then randomly selected schools within each PSU (schools were the SSUs) and then randomly selected kindergarteners within each school (students were the TSUs). They then created two strata for each school with Asian and Pacific Islander students in one stratum and all other students in the other. Students were randomly sampled within this second stratum. The target number of children per school was 24.

Weights in complex survey designs such as the one employed with ECLS are calculated via the same that we discussed in the last lecture. Nothing changes except for the layers of complexity. The good news, however, is that we a researchers don't have to compute the weights ourselves. Instead, we can use information provided by the survey makers.

The PSUs that are provided by NCES are what is known as "analysis PSUs". They aren't the identifier for the actual school or student. Instead, they are allocated within strata (many times 2 PSU per strata). Strata themselves may be analysis strata, that is, not the same strata that were used to run the survey. Oftentimes, this is done in service of further protecting the anonimity of participants. As far your analyses go, the end result is the same, but sometimes this can be a source of confusion.

Variance estimation in complex survey designs

There are four common options for estimating variance in complex survey designs:

- 1. Taylor series linearized estimates
- 2. Balanced repeated replication (BRR) estimates
- 3. Jackknife estimates
- 4. Bootstrap estimates

Remember that these are all estimates: you cannot directly compute the variance of quantities of interest from complex surveys. Instead, you must use one of these techniques, with trade-offs for each. We'll be using a couple of datasets for this lesson:

- *nhanes*, which is a health survey conducted using a complex survey design that comes with a variety of weights
- *nmihs_bs*, which is a survey of births that comes with bootstrap replicate weights

Let's start with the *nhanes* dataset from which we'd like to get average height weight and age for the US population. First, let's get the naive estimate:

. webuse nhanes2f, clear						
. // naive mean . mean age height weight						
Mean estimation		Number	of obs =	10,337		
	Mean	Std. Err.	[95% Conf.	Interval]		
age	47.5637	.1693381	47.23177	47.89564		
height	167.6512	.0950124	167.465	167.8375		
weight	71.90088	.1510277	71.60484	72.19692		

We can also take a look at the sampling design, particularly the designation of strata and PSUs:

. tab stratid psuid

stratum identifier	primary unit,	sampling 1 or 2	
, 1-32	1		Total
1	215	165	380
2	118	67	185
3	199	149	348
4	231	229	460
5	147	105	252
6	167	131	298
7	270	206	476
8	179	158	337
9	143	100	243
10	143	119	262
11	120	155	275
12	170	144	314
13	154	188	342
14	205	200	l 405
15	189	191	380
16	177	159	336
17	180	213	393
18	144	215	359
20	158	125	283
21	102	111	213
22	173	128	301
23	182	158	340
24	202	232	434
25	139	115	254
26	132	129	261
27	144	139	283
28	135	163	298
29	287	215	502
30	166	199	365
31	143	165	308
32	239	211	l 450

Total | 5,353 4,984 | 10,337

We can use the weights supplied with *nhanes* to get accurate estimates of the means, but the variance estimates will be off:

. mean age height weight [pw = finalwgt]

Mean estimatio	'n	Number	of obs =	10,337
	Mean	Std. Err.	[95% Conf.	Interval]
age height weight	42.23732 168.4625 71.90869	.1617236 .1139787 .1802768	41.92031 168.2391 71.55532	42.55433 168.686 72.26207

svyset and svy: <command>

To aid in the analysis of complex survey data, Stata has incorporated the svyset command and the svy: prefix, with its suite of commands. With svyset, you can set the PSU (and SSU and TSU if applicable), the weights, and the type of variance estimation along with the variance weights (if applicable). Once set, most Stata estimation commands such as mean can be combined with svy: in order to produce correct estimates.

Variance estimators

Taylor series linearized estimates

Taylor series linearized estimates are based on the general strategy of Taylor series estimation, which is used to linearize a non-linear function in order to describe the function in question. In this case, a Taylor series is used to approximate the function, and the variance of the result is the estimate of the variance.

The basic intuition behind a linearized estimate is that the variance in a complex survey will be a nonlinear function of the set of variances calculated within each stratum. We can calculate these, then use the first derivative of the function that would calculate the actual variance as a first order approximation of the actual variance. This works well enough in practice. To do this, you absolutely must have multiple *PSUs* in each stratum so you can calculate variance within each stratum.

This is the most common method and is used as the default by Stata. You must, however, have within-stratum variance among PSUs for this to work, which means that you must have at least two PSUs per stratum. This lonely PSU problem is common and difficult to deal with. We'll return the lonely PSU later.

To set up a dataset to use linearized estimates in Stata, we use the svyset command:

```
. // set survey characteristics with svyset
. svyset psuid [pweight = finalwgt], strata(stratid)
        pweight: finalwgt
        VCE: linearized
Single unit: missing
        Strata 1: stratid
        SU 1: psuid
        FPC 1: <zero>
```

Now that we've set the data, every time we want estimates that reflect the sampling design, we use the svy: <command> format:

. svy: mean age height weight (running mean on estimation sample) Survey: Mean estimation Number of strata = 31 Number of obs = 10,337 Number of PSUs = 62 Population size = 117,023,659Design df = 31 Τ Linearized Mean Std. Err. [95% Conf. Interval] _____+ .3034412 .1471709 age | 42.23732 41.61844 42.85619 height | 168.4625 .1471709 168.1624 168.7627 .1672315 71.90869 71.56762 72.24976 weight | _____

As you can see, the parameter estimates (means) are exactly the same as using the weighted sample, but the standard errors are quite different: nearly twice as large for age, but actually smaller for weight.

Balanced repeated replication (BRR) estimates

In a balanced repeated replication (BRR) design, the quantity of interests is estimated repeatedly by using half the sample at a time. In a survey which is designed with BRR in mind, each sampling stratum contains two *PSUs*. BRR proceeds by estimating the quantity of interest from one of the *PSUs* within each stratum. For *H* strata, 2^{H} replications are done, and the variance of the quantity of interest across these strata forms the basis for the estimate.

BRR weights are usually supplied with a survey. These weights result in appropriate half samples being formed across strata. BRR weights should generally be used when the sample was designed with them in mind, and not elsewhere. This can be a serious complication when survey data are subset.

To get variance estimates using BRR in stata, you either need to have a set of replicate weights set up or you need to create a set of balanced replicates yourself. If the data has BRR weights it's simple:

```
. webuse nhanes2brr, clear

. // svyset automagically

. svyset

    pweight: finalwgt

        VCE: brr

        MSE: off

    brrweight: brr_1 brr_2 brr_3 brr_4 brr_5 brr_6 brr_7 brr_8 brr_9 brr_10 brr_11

        brr_12 brr_13 brr_14 brr_15 brr_16 brr_17 brr_18 brr_9 brr_20 brr_21

        brr_22 brr_23 brr_24 brr_25 brr_26 brr_27 brr_28 brr_29 brr_30 brr_31

        brr_32

Single unit: missing

    Strata 1: <one>

    SU 1: <observations>
```

```
. // compute mean using svy pre-command and brr weights
. svy: mean age height weight
(running mean on estimation sample)
BRR replications (32)
Survey: Mean estimation
                      Number of obs =
                                       10,351
                      Population size = 117, 157, 513
                      Replications =
                                      32
                      Design df
                                          31
                                  =
                 ------
         BRR
              Mean Std. Err. [95% Conf. Interval]
        age | 42.25264 .3013406 41.63805
height | 168.4599 .14663 168.1608
weight | 71.90064 .1656452 71.5628
                                      42.86723
                             168.1608
                                      168.7589
                                      72.23847
               _____
```

FPC 1: <zero>

If you don't have the data set up this way, you need to create a Hadamard with dimensions equal to the number of strata. Hadamard matrices are special in that they are square matrices comprised of 1s and -1s that arranged in such a way that each row and column sums to zero (equal numbers of ones and negative ones) and adjacent rows/columns are orthogonal (correlation of zero).

. webuse nhanes2, clear . // create Hadamard matrix in Mata . mata: $h^2 = (1, 1 \setminus 1, -1)$. mata: h4 = h2 # h2. mata: h8 = h2 # h4. mata: h16 = h2 # h8. mata: h32 = h2 # h16. // check row and column sums . mata: rowsum(h32) 1 +---+ 1 | 32 | 2 0 1 3 0 1 4 | 0 | 5 I 0 | 6 | 0 | 7 | 0 | 8 | 0 |

	Mean	BRR Std. Err.	[95% Conf.	Interval]
age	42.25264	.2779063	41.68585	42.81944
height	168.4599	.1411963	168.1719	168.7479
weight	71.90064	.1620071	71.57022	72.23105

Jackknife estimates

The Jackknife is a general strategy for variance estimation, so named by Tukey because of its general usefulness. The strategy for creating a jackknifed estimate is to delete every observation save one, then estimate the quantity of interest. This is repeated for every single observation in the dataset. The variance of every estimate computed provides an estimate of the variance for the quantity of interest.

In a complex sample, this is done by PSUs, deleting each PSU one at a time and re-weighting the observations within the stratum, then calculating the parameter of interest. The variance of these parameters estimates is the within-stratum variance estimate. The within stratum variances calculated this way are then averaged across strata to give the final variance estimate.

The jackknife is best used when Taylor series estimation cannot be done, for instance in the case of lonely PSUs.

In Stata, the command is:

```
. webuse nhanes2jknife, clear
. // set svyset using jackknife weigts
. svyset [pweight = finalwgt], jkrweight(jkw_*) vce(jackknife)
     pweight: finalwgt
         VCE: jackknife
         MSE: off
   jkrweight: jkw_1 jkw_2 jkw_3 jkw_4 jkw_5 jkw_6 jkw_7 jkw_8 jkw_9 jkw_10 jkw_11
              jkw_12 jkw_13 jkw_14 jkw_15 jkw_16 jkw_17 jkw_18 jkw_19 jkw_20 jkw_21
              jkw_22 jkw_23 jkw_24 jkw_25 jkw_26 jkw_27 jkw_28 jkw_29 jkw_30 jkw_31
               jkw_32 jkw_33 jkw_34 jkw_35 jkw_36 jkw_37 jkw_38 jkw_39 jkw_40 jkw_41
              jkw_42 jkw_43 jkw_44 jkw_45 jkw_46 jkw_47 jkw_48 jkw_49 jkw_50 jkw_51
              jkw_52 jkw_53 jkw_54 jkw_55 jkw_56 jkw_57 jkw_58 jkw_59 jkw_60 jkw_61
              jkw_62
 Single unit: missing
    Strata 1: <one>
        SU 1: <observations>
       FPC 1: <zero>
```

Now we can compare the naive estimates with the svyset estimates:

. mean age weight height			
Mean estimation	Number of obs	=	10,351

Mean Std. Err. [95% Conf. Interval] _____+ 47.57965 .1692044 47.24798 age | 47.91133 weight | 71.89752 .1509381 71.60165 72.19339 167.6509 .0949079 height | 167.4648 167.8369 _____ . // compute mean with jackknife weights . svy: mean age weight height (running mean on estimation sample) Jackknife replications (62) 50 Survey: Mean estimation Number of strata = Number of obs = 31 10,351 Population size = 117, 157, 513Replications = 62 Design df 31 -----Jackknife Mean Std. Err. [95% Conf. Interval] 1 _____ ____ 42.25264.302676541.6353342.8699571.90064.165445371.5632172.23806168.4599.1466141168.1609168.7589 age | weight | height | _____

Bootstrap estimates

The bootstrap is a more general method than the jackknife. Bootstrapping involves repeatedly resampling within the sample itself and generating estimates of the quantity of interest. The variance of these replications (usually many, many replications) provides an estimate of the total variance. In NCES surveys, within stratum bootstrapping can be used, with the sum of the variances obtained used as an estimate of the population variance. Bootstrapping is an accurate, but computationally intense method of variance estimation.

As with the jackknife, bootstrapping must be accomplished by deleting each PSU within the stratum one at a time, re-weighting, calculating the estimate, than calculating the bootstrap variance estimate from the compiled samples.

		Number Popula		250 300 350 400 450 550 600 650 700 750 800 850 900 950 1000		
		Number Popula	r of obs = tion size =	250 300 350 400 450 550 600 650 700 750 800 850 900 950 1000 9,946 3,895,562		
				250 300 350 400 450 550 600 650 700 750 800 850 900 950 1000		
				250 300 350 400 450 550 600 650 700 750 800 850 900 950		
				250 300 350 400 450 550 600 650 700 750 800 850 900		
				250 300 350 400 450 550 600 650 700 750 800 850		
				250 300 350 400 450 550 550 600 650 700 750 800		
				250 300 350 400 450 500 550 600 650 700 750		
				250 300 350 400 450 500 550 600 650 700		
· · · · · · · · · · · · · · · · · · ·				250 300 350 400 450 500 550 600 650		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			250 300 350 400 450 500 550 600		
	· · · · · · · · · · · · · · · · · · ·			250 300 350 400 450 500 550		
	· · · · · · · · · · · · · · · · · · ·			250 300 350 400 450 500		
	· · · · · · · · · · · · · · · · · · ·			250 300 350 400 450		
	· · · · · · · · · · · · · · · · · · ·			250 300 350 400		
				250 300 350		
				250 300		
		•••••		250		
				200		
				200		
				150		
				100		
				50		
Bootstrap rep	-+ 2+-	00) 3+ 4	L+ R			
. svy: mean b	-	_				
. // compute	mean with svy	bootstrap				
birthwgtlbs	6.272294	.0217405	6.229678	6.31491		
		Std. Err.				
Mean estimati	-	Normhoo	of obs =	0.046		
. // compute . mean birthw	naive mean bi gtlbs	rthweight				
(7 missing va	lues generate	gt * 0.0022040		cans		
. gen birthwg	-	grams to ips i				
. gen birthwg	birth weight	grams to lbs t	or the Ameri			
FPC 1 . // convert . gen birthwg	-	grams to lbs 1	for the Ameri			
Strata 1 SU 1 FPC 1 . // convert . gen birthwg	: <one> : idnum : <zero> birth weight</zero></one>	grams to lbs t	for the Ameri			
SU 1 FPC 1 . // convert . gen birthwg	: missing : <one> : idnum : <zero> birth weight</zero></one>	w994 bsrw995 b grams to lbs t		51 551 8550	051 0000	051 1000

		[95% Conf.	· · · · -
1		7.369255	

Lonely PSUs

The most common problem that students have with complex surveys is what is known as "lonely PSUs." When you subset the data, you may very well end up with a sample that does not have multiple PSUs per stratum. There are several options for what do in this case:

- Eliminate the offending data by dropping strata with singleton PSUs. This is a terrible idea.
- Reassign the PSU to a neighboring stratum. This is okay, but you must have a reason why you're doing this.
- Assign a variance to the stratum with a singleton *PSU*. This could be the average of the variance across the other strata. This process is also known as "scaling" and generally is okat, but you should take a look at how different this stratum is from the others before proceeding.

The svyset command includes three possible options for dealing with loney *PSUs*. Based on the above, I recommend you use the singleunit(scaled) command, but with caution and full knowledge of the implications for your estimates.

Init: 23 August 2015; Updated: 24 August 2015