Programming
LPO 9951 | Fall 2015

PURPOSE Stata programming will save you time, energy, and sanity. Investing the time now into learning
how to program will certainly pay off. It may seem easy enough now to just copy code 10 times if you need
to complete an operation 10 times, but force yourself to use your programming skills. By Maymester, you
will thank yourself.

Tools you already have

Programming is more than just knowing the most convenient commands to shorten the time you spend on
menial tasks. It involves thinking about how the commands you do can be combined to make a more efficient,
readable do-file for you and anyone else who will look at it in the future.

The following points are good places to start when you are trying to make your program file more efficient.

e Previous code: You may have already encountered this strategy in the work that you have done thus
far for the class. Snippets of code that you have already toiled over can be used again and again. The
following tips might come in handy.

— Save your do-files

Label them well

— Re-use old code, copy-paste
— Make templates if you use a certain piece of code often

— Create files to include or do (e.g., “programs” you can immediately run for things like dealing
with missing data)

e Programming: When you approach your Stata script as a programmer, you have a different perspective,
a certain general approach on how to put these pieces together. The following points are questions you
might ask yourself in going through the general process for your program.

What is the overall task I am trying to accomplish?

— How are the variables structured? Which variables go together?

What tasks need to be repeated?

— What procedures may stay the same, though the numerical values may change?

Organizing your do file

As your do files increase in length, you will want some type of organizational structure. A table of contents
at the top of the script can be very helpful. You certainly don’t have to do it the way the way shown below,
but you should have something that makes sense to you and will be clear to others who may read your script.

./
i
i
./
./
./
i
i
./
./
./
./
A/
i
A/
.1/
./
A/
i
./
./
./
./
i
./
./

TABLE OF CONTENTS

0.0
1.
2.

o

(&)

~
O 00000 O OO U oo OO PO WwwoONNDNO

Set preferences/globals
Describing
Scalars

.1 return
.2 ereturn
.3 scalar

Estimates

.1 estimates store
.2 estimates restore

Shortcuts

.1 numlists
.2 varlists

Macros

.1 globals

.2 numerical locals
.3 varlist locals
.4 nested locals

Matrices
Switches
Loops

.1 if / else
.2 foreach
.3 forvalues
.4 while

Nests

File header

Like you’ve seen in the do files from earlier lectures, it’s often useful to place your file preferences at the top
of the script. These may include, but aren’t limited to, graphics settings and global macros storing directory
structurs or url links. If you are only using one dataset for your analysis, this is a good place to load it.

clear all

set more off

> re

. global datadir "../data/"

. use ${datadir}loondata, clear

Describing

bysort: Used by itself or in combination with gen or egen, this command also allows you to perform a task
on numerous categories of a variable or variables.

For example, we might want to know what the average flock size is by status as a loon. We could use the

following code:

sum flockl if loon ==

// clear memory

// turn off annoying "__more__" featu

Variable | Obs Mean Std. Dev. Min Max
flockl | 157 82822.28 20149.31 37267 125631

sum flockl if loon ==
Variable | Obs Mean Std. Dev. Min Max

flockl | 278 78270.19 20389.95 12812 136822
A slightly easier bit of code would use tab with the summarize option:

. tab loon, summarize(flockl)

Summary of Size of flock

|

| represented
Loon | Mean Std. Dev. Freq.
____________ +____________________________________
0 | 82822.28 20149.306 157
1] 78270.187 20389.948 278
____________ +t+——_—_—————rrrrrrrrrrrrrr -
Total | 79913.126 20397.942 435

Still another line of code uses the bysort command, which takes the form bysort <sorting variable>:
<command> <variable>:

. bysort loon: sum flockl

flockl | 278 78270.19 20389.95 12812 136822

We could actually ask for numerous variables summarized in this way.

. bysort loon: sum flockl flock2 flock3

Variable | Obs Mean Std. Dev. Min Max

flockl
flock2
flock3

flockl
flock2
flock3

157
157
157

82822.28
84158.22
83077.31

78270.19
78014.35
76961.31

20149.31
28303.17
34877 .37

20389.95
25704.09
27805.51

37267
23892
17005

125631
175592
207132

136822
160571
168056

QUICK EXERCISE

Find the average number of feathers in each period by the double condition of being a loon and
location of nest.

Scalars

Scalars temporarily save information that you can use later. There are two types of information that are

stored in STATA after you run commands. The first is saved as r and can be found by using return list.
Here are some examples:

sum shellsi
Variable | Obs Mean Std. Dev.
_____________ +___

shellsl | 114167.8 26180.23 45770 164786

. return list

scalars:
r(N) = 435

r(sum_w) = 435

r(mean) = 114167.8252873563
r(Var) = 685404214.9233223
r(sd) = 26180.22564691379
r(min) = 45770
r(max) = 164786
r(sum) = 49663004

. di r(mean)
114167.83

. di r(sd)
26180.226

The second type of information that is stored is under e. These can be found by using ereturn list:

. mean shellsl

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
shellsl | 114167.8 1255.246 111700.7 116634.9
. ereturn list
scalars:
e(df_r) = 434
e(N_over) = 1
e(N) = 435
e(k_eq) = 1
e(rank) = 1
macros:
e(cmdline) "mean shellsil"
e(cmd) "mean"
e(vce) "analytic"
e(title) "Mean estimation"
e(estat_cmd) "estat_vce_only"
e(varlist) "shells1"
e(marginsnotok) : "_ALL"
e(properties) "o V"
e(depvar) "Mean"
matrices:
e(b) 1x1
e (V) 1x1
e(_N) 1x1
e(error) 1x1
functions:
e(sample)
. di e(N)
435

Keep in mind, however, that each time you run an expression, your previously stored information in both
return and ereturn are overwritten. For example, if you run a sum command on one variable, you might have
an r(mean) = 100. However, the next time you run sum on a new variable, the r (mean) will be overwritten,
so you need to be aware of which variable you are using.

So how do we store this information into memory for future use without fear of it being overwritten? There
are multiple ways to do so. One easy way includes naming and storing your own scalar using the scalar
command, which takes the form of scalar <name> = <value>

You can name a scalar whatever you want and assign it a value. Let’s do this for the mean of total number
of shells in the first period and show how this preserves the value despite the fact that we run another mean
on feathers.

sum shellsi

Variable | Obs Mean Std. Dev. Min Max
shellsl | 435 114167.8 26180.23 45770 164786
scalar mean_shellsl = r(mean)
sum feathersl
Variable | Obs Mean Std. Dev. Min Max
feathersl | 435 121527.2 19807 .43 65728 181036

. di mean_shellsl
114167.83

QUICK EXERCISE

Use a scalar to calculate the average number of shells across all three periods.

Estimates
Similar to scalars and returns, estimates store multiple values. This will be especially useful when we get into

regressions next semester. For now, let’s just use estimates to store information we’ve learned from the mean
command.

. mean ideasl

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
ideasi1 | 11.51724 .224046 11.07689 11.95759

. estimates store m_ideasl

Now we’ll use estimates restore and estimates replay to bring up previous information that we’ve stored.

. mean eggsl

Mean estimation Number of obs = 435
| Mean Std. Err [95% Conf. Intervall]
_____________ +__
eggsl | 5.878161 .0935593 5.694275 6.062047

. estimates store m_eggsl

. estimates restore m_ideasl
(results m_ideasl are active now)

. estimates replay

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
ideasi | 11.51724 .224046 11.07689 11.95759

. estimates clear

Shortcuts: Numlists and Varlists

Numlists and varlists can make your life much easier by streamlining your code. Here are some examples of
numlists. Notice how we sort the data using both sort and gsort. Also notice the - sign used in the second
list command (-10/1) and with gsort -ideasl. In the first case, the sign tells Stata to list the last 10
observations (’starting at the end, go back 10). In the second case, Stata understands that we want to sort
our data based on the values in ideas1, but instead of sorting from smallest to largest, as is the default, we
instead want descending values.

sort shellsl

. list id shellsl loon upper in 1/10

1. | 371 45770 0 0 |
2. | 356 48682 0 0 |
3. | 357 52093 0 0 |
4. | 350 55419 0 0 |
5. | 309 58637 0 1|

et I
6. | 396 58916 0 0 |
7. | 321 59106 0 1]
8. | 401 59578 0 0 |
9. | 335 60526 0 0 |
10. | 326 60763 0 1]

o +

| id shellsl loon upper |

1
1
1
1
1
1
1
1
1
1

164786

5

. gsort -ideasl

. list id ideasl loon upper in 1/10

| |
H“OOnle_OOilo
Q| [

[P |

=R [

| [

| i
M“OOOOO_OOOOO
o | |
— [

| [

| |
— | LT OMNOAN | A A
%“22222_22222
o | [
< | [
= |

| [

| |
T | AN~ A0 | ¥ NO WM
Al N OO I 0N O

_43423_34333

. list id ideasl loon upper in -10/1

| |
H_OOOOO“OOOOO
Q| |
Q| |
= |
| |
| |
g 1 A~ o A A
o | |
o | |
— | |
| |
| |
ﬂ_33322_21100
o | |
O | |
o | |
| |
| |
| |
T | OO O W | 0MOMmM-— ©
H ol OO M WY Oo
_22 11_12122

And here’s how we might use varlists. Notice how instead of listing every variable, we can list the starting
and final column with a - between. Using this format requires that we know the order of the variables in our
dataset. We can also use wildcards such as *. As you can see, Stata returns every variable that starts with
flock. Keep this feature in mind as you name your variables.

sum shellsl-flock3, sep(3)

Variable | Obs Mean Std. Dev Min Max
_____________ +___
shellsl | 435 114167.8 26180.23 45770 164786
shells2 | 435 114560.5 36139.61 28835 236489
shells3 | 435 113311.4 42467 .27 27373 265026
_____________ +___
feathersl | 435 121527.2 19807.43 65728 181036
feathers2 | 435 122083 33439.98 47380 265891
feathers3 | 435 120652.8 40768.82 34113 278089
_____________ +___
flockl | 435 79913.13 20397.94 12812 136822
flock2 | 435 80231.79 26802.23 13561 175592
flock3 | 435 79168.69 30648.81 14268 207132
sum flockx*

Variable | Obs Mean Std. Dev Min Max
_____________ +___
flockl | 435 79913.13 20397.94 12812 136822
flock2 | 435 80231.79 26802.23 13561 175592
flock3 | 435 79168.69 30648.81 14268 207132

Macros

Globals

We’ve already been using global macros throughout this course, but it never hurts to reiterate. Global macros
allow you to store many types of information that will persist throughout a Stata session. We’ve been using
them to store relative directory links, but they can also store numerical values and even commands.

Be careful when using global macros. It is easy over the course of a long Stata session to forget what’s
hanging around in the memory. To see which globals (or any macros you have stored for that matter), you
can use the macro list command. To drop macros you no longer need, a generally good policy, use the
macro drop <macro names> command.

. global repstr "Long string I will use a lot and don't want to retype"

. macro list

repstr: Long string I will use a lot and don't want to retype
S_2: 1

S_1: ideasl

S_FNDATE: 17 Sep 2014 09:25

S_FN: ../data/loondata.dta

datadir: ../data/

Fi: help advice;

F2: describe;

F7: save

F8: use

S_ADO: BASE;SITE; . ; PERSONAL; PLUS; OLDPLACE
S_StataSE: SE

S_CONSOLE: console

S_FLAVOR: Intercooled

S_0S: Unix

S_MACH: Macintosh (Intel 64-bit)

S_level: 95

S_MODE: batch

. di "$repstr"

Long string I will use a lot and don't want to retype
. macro drop repstr

. macro list

S_2: 1

S_1: ideasl

S_FNDATE: 17 Sep 2014 09:25

S_FN: ../data/loondata.dta
datadir: ../data/

F1: help advice;

F2: describe;

F7: save

F8: use

S_ADO: BASE;SITE; . ; PERSONAL; PLUS; OLDPLACE
S_StataSE: SE

S_CONSOLE: console

S_FLAVOR: Intercooled

S_0S: Unix

S_MACH: Macintosh (Intel 64-bit)
S_level: 95

S_MODE: batch

Locals

Locals are a way of storing information that you would not really want to store in a new variable or even
scalar. Some of the other automatic results that are given after running some descriptive or estimation
command are locals. Locals can store a single value or a list of values, but only for length of time that the
script is actively running. This is unlike global macros, which persist throughout a Stata session (until you
quit the program or purposefully drop them). Once script has exited, all information stored in locals is lost.
There is a very particular way data in locals are stored and recalled.

Here are some of the different ways locals are used with numbers:

. local i 1

. local j = 2

cdi v

10

local k =

di “k'

sum ideasl

Variable

Ti

l+‘j|

Mean

Std. Dev.

_____________ g gy g By Mg Ry g M M iy S M

ideasl

. local mean_ideasl = r(mean)

435

. di “mean_ideasl'

11.517241

11.51724

4.67285

Locals can also store strings (such as variable names):

0

. local contributions ideasl ideas2 ideas3 eggsl eggs2 eggs3

sum ~contributions', sep(3)

Variable
ideasl
ideas2
ideas3

|
+
|
I
I
+
|
|
I

25

11.51724
11.56322
11.42529

4.67285
4.79271
5.11263

5.878161
5.924138
5.786207

1.951333
2.155529
2.95867

Even better, locals can be nested, that is, a local can hold other locals:

. local whoareyou loon upper seasons

. local wholeshebang “contributions' “whoareyou'

sum “wholeshebang', sep(3)

Variable
ideasl
ideas2
ideas3

I
+
I
I
I
+
I
I
I

11.51724
11.56322
11.42529

4.67285
4.79271
5.11263

5.878161
5.924138
5.786207

1.951333
2.155529
2.95867

11

loon | 435 .6390805 .4808202 0 1
upper | 435 .2298851 .4212432 0 1
seasons | 435 8.036782 1.71696 5 12

NB: The quotation marks for locals can be tricky. If you are having trouble getting your locals to do exactly
what you want, check to make sure you are using the correct quotes. The left quote ¢, or backtick, is distinct
from the normal single quotation mark, '.

Matrices

Stata has a powerful matrix language under the hood called Mata. If you are feeling particularly bold, you
can perform most if not all of your analyses through linear algebra. More realistically, you will use Stata
matrices to store output in a convenient format.

For example, let’s say you want to gather the mean and standard error of multiple variables. Using return
list after mean, we can see that Stata stores the underlying information it presents in a matrix called
r(table).

. mean ideasl ideas2 ideas3

Mean estimation Number of obs = 435
| Mean Std. Err [95% Conf. Intervall]
_____________ +__
ideasi | 11.51724 .224046 11.07689 11.95759
ideas?2 | 11.56322 .2297929 11.11157 12.01486
ideas3 | 11.42529 .2451319 10.94349 11.90708

. // return list to show r(table)
. return list

scalars:
r(level) = 95
macros:
r (mcmethod) : "noadjust"
matrices:

r(table) : 9 x 3
. matrix list r(table)

r(table) [9,3]
ideasl ideas2 ideas3
b 11.517241 11.563218 11.425287
se .22404603 .22979287 .24513187
t 51.405692 50.320178 46.608739
pvalue 1.10e-186 3.07e-183 4.76e-171
11 11.076891 11.111573 10.943494
ul 11.957592 12.014864 11.907081

12

df 434 434 434
crit 1.9654451 1.9654451 1.9654451
eform 0 0 0

Unfortunately, in a “you can’t get there from here” kind of situation, you cannot subset the r (table) matrix
directly. Instead, we must first store it another matrix. Once that is accomplished, we can subset the matrix
to just the first two rows that we want by using square brackets, [], after the matrix. Following convention,
the brackets use the format [, j], with ¢ standing in for row and j for column. When more than one row or
column are wanted, Stata uses the form [i_start .. i_end, j_start .. j_end]. Note that any of those
four positions can be replaced by ., which in this case roughly means all. After subsetting the matrix, we
can transpose it using a single quotation mark, .

. matrix meanse = r(table)

. matrix list meanse

meanse[9, 3]

ideasl ideas2 ideas3

b 11.517241 11.563218 11.425287

se .22404603 .22979287 .24513187

t b51.405692 50.320178 46.608739
pvalue 1.10e-186 3.07e-183 4.76e-171
11 11.076891 11.111573 10.943494

ul 11.957592 12.014864 11.907081

df 434 434 434
crit 1.9654451 1.9654451 1.9654451
eform 0 0 0

. // subset matrix

. matrix meanse = meanse[1..2,1...]
. matrix list meanse

meanse[2, 3]

ideasl ideas2 ideas3
b 11.517241 11.563218 11.425287
se .22404603 .22979287 .24513187

. // transpose matrix
. matrix tmeanse = meanse'

. matrix list tmeanse

tmeanse[3,2]

b se
ideasl 11.517241 .22404603
ideas2 11.563218 .22979287
ideas3 11.425287 .24513187

Finally, it is useful to know how to initialize a blank matrix. Using the command matrix <name> =
J(<rows>, <columns>, <fill>), we can initialize a matrix of rows by columns size that is filled with fill.
Choosing . is implicitly choosing a blank matrix.

Once the matrix is created, we can fill its cells one by one with output from various commands or simply
values that we want.

13

. matrix blank = J(5,2,.)

. // add to first row and show matrix
. matrix blank[1,1] =1

. matrix blank[1,2] = 6

. matrix list blank

blank[5,2]
cl «c2

rl 1 6

r2

r3

r4

rb

Switches

Now that weve learned how to create locals, lets use them to create switches. Switches are impor- tant
because you can use them to turn on and off portions of your code. For example, you can use them to
delegate whether you want to input the full dataset or your most recently save data. You could also use them
to determine whether you want to turn graphs on or off. They can be very useful.

As an example, below is a switch for turning on or off graphs:

. local graphs = 0

if “graphs' == 1 {
scatter shellsl feathersl if loon ==

.}

As you can see, there is no special switch command. Instead, we create a local called graphs that is set to
either 0 or 1. Next comes an if statement that says if the local is equal to 1, then run the graph. If not,
then don’t. It’s good practice to place your switches in the top of your do file so that you don’t have to hunt
for them.

One trick to keep track of if statements (and loops as you will see below) is to indent code that is within
the loop and align the start of the loop with the end of the loop. It’s also good practice with long loops to
use a comment at the closing brace to label the loop (very helpful when you have many loops in your file).

Loops

Loops are used when you are performing one task on a variable or group of variables and bysort and egen
cannot meet your needs. It is useful to think about how the procedures you are running can be grouped
together and how the same structure can be applied to multiple cases. Stata loops have a few different
structures:

o if (if / else)
e foreach

e forvalues

e while

14

if / else
To start, let’s just use our switch structure to specify an alternative action if the switch condition is not met.

. local switch = 0

if “switch' == 0 {
sum loon if upper ==

Variable | Obs Mean Std. Dev. Min Max

_____________ +___
loon | 335 .6925373 .462133 0 1

.7
. else {
. sum loon if upper ==
.7
If switch == 1 then the first command will run; in all other cases, the second command will run.
foreach

Another type of loop uses the foreach command. Take a look at the help file for foreach statements. As
you can see, there are a variety of different ways to use the foreach command. Here are some examples

. foreach var of varlist shellsi-feathers3 {

2. mean ~“var'
3.}

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
shellsl | 114167.8 1255.246 111700.7 116634.9
Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
shells2 | 114560.5 1732.762 111154.8 117966.1
Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__

15

http://www.stata.com/manuals14/pforeach.pdf

shells3 | 113311.4 2036.15 109309.4 117313.3

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall
_____________ +__
feathers1 | 121527.2 949.6935 119660.7 123393.8
Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +___-______________-_____________-____-__—_-—_—_-
feathers2 | 122083 1603.324 118931.7 125234.2
Mean estimation Number of obs = 435
| Mean Std. Err [95% Conf. Intervall]
_____________ +__
feathers3 | 120652.8 1954.715 116810.9 124494 .6

. local memberships loon upper

. foreach var of local memberships {

2. mean ~var'
3. }

Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
loon | .6390805 .0230536 .5937699 .684391
Mean estimation Number of obs = 435
| Mean Std. Err. [95% Conf. Intervall]
_____________ +__
upper | .2298851 .0201971 .1901888 .2695813

. foreach val in id {
2. list “val' if eggsl < 3
3.}

16

67. | 394 |
92. | 386 |
118. | 203 |
120. | 18 |
132. | 345 |

[-——-- I
175. | 308 |
267. | 121 |
330. | 135 |
347. | 326 |
398. | 259 |

+———— +

QUICK EXERCISE

Rescale each shells* variable so it is in 1000s of shells.

forvalues

Another loop command that is quite useful is called forvalues. The forvalues loop uses a counter within
a loop and repeats the loop until you hit the maximum specified value. Here are some examples; notice the
different ways to count:

. forvalues x = 1/10 {
2. di “x!'
3. }

© 00 N O d WN -

[
(@]

. forvalues y = 2(2)10 {
2. di "y
3. %

W O N

10

. forvalues z = 2 4 to 10 {
2. di “z'
3.}

2

17

W O

QUICK EXERCISE

Use forvalues to create means for days in nest.

while

Finally, while loops are another way to loop using numbers. They are similar to forvalues loops in Stata,
but require a counter. Though the two are generally interchangeable, while loops are technically about
waiting to fulfill a condition. Therefore, they can be used in more ways than forvalues loops. Keep in mind,
however, that if you set a condition that will never be fulfilled, your while loop will run forever (or until
your computer crashes or the network administrator, if you are running code through a network, kills the
process and sends you a mean email).

. local i =1

. while "i' < 11 {

2. di “i'
3. local i = "i' + 1
4. }

1

2

3

4

5

6

7

8

9

10

Nests

It is also possible to nest loops within loops. When you do this, the outer loop runs until it hits an inner
loop. Then it evaluates the inner loop until the inner loop is finished. Then it will continue with the outer
loop. If the inner loops statement uses an if statement, Stata will only evaluate it if the condition is met
(evaluates to true). This can get very complicated very quickly, so you need to know where you are in the
code. This is why it is smart to indent all commands within a loop to the level of the loop.

. local thoughts ideasl ideas2 ideas3

. forvalues i = 1/2 {
2. if "it =1 {
3. local type "Not a loon"
4. }

5 if "i' == 2 {

18

6. local type "Loon"

7. ¥

8. foreach var of local thoughts {
9. di "“i': “type'"

10. sum “var' if loon == "i' -1
11. }

12. }

1: Not a loon

Variable | Obs Mean Std. Dev. Min Max
_____________ +___

ideasi | 157 15.95541 3.386141 7 25
1: Not a loon

Variable | Obs Mean Std. Dev. Min Max
_____________ +___-____-_____________-____-____-____-________-____-—__—_

ideas?2 | 157 16.04459 3.429405 7 25
1: Not a loon

Variable | Obs Mean Std. Dev. Min Max
_____________ +___
ideas3 | 157 15.80255 3.984649 7 26

2: Loon
Variable | Obs Mean Std. Dev. Min Max
_____________ +___
ideasi | 278 9.010791 3.207036 0 18

2: Loon
Variable | Obs Mean Std. Dev. Min Max
_____________ +___
ideas?2 | 278 9.032374 3.399251 0 19

2: Loon
Variable | Obs Mean Std. Dev. Min Max
_____________ +___
ideas3 | 278 8.953237 3.875496 -2 22

QUICK EXERCISE

Using the nested loop above, store the number of observations, mean, and standard error in a
matrix. Hint: initialize a blank matrix before the loop (how big does it need to be?).

Sectioning your do-file (templates)

You will go through the same general procedures every time you work with quantitative data. The structure
of this class is a good guide for you to create your own template do-file that you can pull up every time you
start a new research project. Sections might include the following;:

o Setting up Stata (most of what the do files we have been using for class already have)
o Setting up globals/locals/file preferences
e Pulling in the data you will use

19

Init:

Data cleaning/validation

Taking account of the survey design
Descriptive statistics

Regression model(s)

Recording output

16 August 2015; Updated: 30 August 2015

20

	Tools you already have
	Organizing your do file
	File header
	Describing
	Scalars
	Estimates
	Shortcuts: Numlists and Varlists
	Macros
	Globals
	Locals

	Matrices
	Switches
	Loops
	if / else
	foreach
	forvalues
	while

	Nests
	Sectioning your do-file (templates)

